博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
计算机程序的思维逻辑 (81) - 并发同步协作工具
阅读量:6256 次
发布时间:2019-06-22

本文共 10308 字,大约阅读时间需要 34 分钟。

本系列文章经补充和完善,已修订整理成书《Java编程的逻辑》(马俊昌著),由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买:

我们在和实现了线程的一些基本协作机制,那是利用基本的wait/notify实现的,我们提到,Java并发包中有一些专门的同步工具类,本节,我们就来探讨它们。

我们要探讨的工具类包括:

  • 读写锁ReentrantReadWriteLock
  • 信号量Semaphore
  • 倒计时门栓CountDownLatch
  • 循环栅栏CyclicBarrier

与介绍的显示锁和介绍的显示条件类似,它们也都是基于AQS实现的,AQS可参看。在一些特定的同步协作场景中,相比使用最基本的wait/notify,显示锁/条件,它们更为方便,效率更高。下面,我们就来探讨它们的基本概念、用法、用途和基本原理。

读写锁ReentrantReadWriteLock

之前章节我们介绍了两种锁,介绍了synchronized,介绍了显示锁ReentrantLock。对于同一受保护对象的访问,无论是读还是写,它们都要求获得相同的锁。在一些场景中,这是没有必要的,多个线程的读操作完全可以并行,在读多写少的场景中,让读操作并行可以明显提高性能。

怎么让读操作能够并行,又不影响一致性呢?答案是使用读写锁。在Java并发包中,接口ReadWriteLock表示读写锁,主要实现类是可重入读写锁ReentrantReadWriteLock。

ReadWriteLock的定义为:

public interface ReadWriteLock {    Lock readLock();    Lock writeLock();}复制代码

通过一个ReadWriteLock产生两个锁,一个读锁,一个写锁。读操作使用读锁,写操作使用写锁。

需要注意的是,只有"读-读"操作是可以并行的,"读-写"和"写-写"都不可以。只有一个线程可以进行写操作,在获取写锁时,只有没有任何线程持有任何锁才可以获取到,在持有写锁时,其他任何线程都获取不到任何锁。在没有其他线程持有写锁的情况下,多个线程可以获取和持有读锁。

ReentrantReadWriteLock是可重入的读写锁,它有两个构造方法,如下所示:

public ReentrantLock()public ReentrantLock(boolean fair)复制代码

fire表示是否公平,不传递的话是false,含义与介绍的类似,就不赘述了。

我们看个简单的例子,使用ReentrantReadWriteLock实现一个缓存类MyCache,代码如下:

public class MyCache {    private Map
map = new HashMap<>(); private ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock(); private Lock readLock = readWriteLock.readLock(); private Lock writeLock = readWriteLock.writeLock(); public Object get(String key) { readLock.lock(); try { return map.get(key); } finally { readLock.unlock(); } } public Object put(String key, Object value) { writeLock.lock(); try { return map.put(key, value); } finally { writeLock.unlock(); } } public void clear() { writeLock.lock(); try { map.clear(); } finally { writeLock.unlock(); } }}复制代码

代码比较简单,就不赘述了。

读写锁是怎么实现的呢?读锁和写锁看上去是两个锁,它们是怎么协调的?具体实现比较复杂,我们简述下其思路。

内部,它们使用同一个整数变量表示锁的状态,16位给读锁用,16位给写锁用,使用一个变量便于进行CAS操作,锁的等待队列其实也只有一个

写锁的获取,就是确保当前没有其他线程持有任何锁,否则就等待。写锁释放后,也就是将等待队列中的第一个线程唤醒,唤醒的可能是等待读锁的,也可能是等待写锁的。

读锁的获取不太一样,首先,只要写锁没有被持有,就可以获取到读锁,此外,在获取到读锁后,它会检查等待队列,逐个唤醒最前面的等待读锁的线程,直到第一个等待写锁的线程。如果有其他线程持有写锁,获取读锁会等待。读锁释放后,检查读锁和写锁数是否都变为了0,如果是,唤醒等待队列中的下一个线程。

信号量Semaphore

之前介绍的锁都是限制只有一个线程可以同时访问一个资源。现实中,资源往往有多个,但每个同时只能被一个线程访问,比如,饭店的饭桌、火车上的卫生间。有的单个资源即使可以被并发访问,但并发访问数多了可能影响性能,所以希望限制并发访问的线程数。还有的情况,与软件的授权和计费有关,对不同等级的账户,限制不同的最大并发访问数。

信号量类Semaphore就是用来解决这类问题的,它可以限制对资源的并发访问数,它有两个构造方法:

public Semaphore(int permits)public Semaphore(int permits, boolean fair)复制代码

fire表示公平,含义与之前介绍的是类似的,permits表示许可数量。

Semaphore的方法与锁是类似的,主要的方法有两类,获取许可和释放许可,主要方法有:

//阻塞获取许可public void acquire() throws InterruptedException//阻塞获取许可,不响应中断public void acquireUninterruptibly()//批量获取多个许可public void acquire(int permits) throws InterruptedExceptionpublic void acquireUninterruptibly(int permits)//尝试获取public boolean tryAcquire()//限定等待时间获取public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException//释放许可public void release()复制代码

我们看个简单的示例,限制并发访问的用户数不超过100,代码如下:

public class AccessControlService {    public static class ConcurrentLimitException extends RuntimeException {        private static final long serialVersionUID = 1L;    }    private static final int MAX_PERMITS = 100;    private Semaphore permits = new Semaphore(MAX_PERMITS, true);    public boolean login(String name, String password) {        if (!permits.tryAcquire()) {            // 同时登录用户数超过限制            throw new ConcurrentLimitException();        }        // ..其他验证        return true;    }    public void logout(String name) {        permits.release();    }}复制代码

代码比较简单,就不赘述了。

需要说明的是,如果我们将permits的值设为1,你可能会认为它就变成了一般的锁,不过,它与一般的锁是不同的。一般锁只能由持有锁的线程释放,而Semaphore表示的只是一个许可数,任意线程都可以调用其release方法。主要的锁实现类ReentrantLock是可重入的,而Semaphore不是,每一次的acquire调用都会消耗一个许可,比如,看下面代码段:

Semaphore permits = new Semaphore(1);permits.acquire();permits.acquire();System.out.println("acquired");复制代码

程序会阻塞在第二个acquire调用,永远都不会输出"acquired"。

信号量的基本原理比较简单,也是基于AQS实现的,permits表示共享的锁个数,acquire方法就是检查锁个数是否大于0,大于则减一,获取成功,否则就等待,release就是将锁个数加一,唤醒第一个等待的线程。

倒计时门栓CountDownLatch

我们在使用wait/notify实现了一个简单的门栓MyLatch,我们提到,Java并发包中已经提供了类似工具,就是CountDownLatch。它的大概含义是指,它相当于是一个门栓,一开始是关闭的,所有希望通过该门的线程都需要等待,然后开始倒计时,倒计时变为0后,门栓打开,等待的所有线程都可以通过,它是一次性的,打开后就不能再关上了。

CountDownLatch里有一个计数,这个计数通过构造方法进行传递:

public CountDownLatch(int count)复制代码

多个线程可以基于这个计数进行协作,它的主要方法有:

public void await() throws InterruptedExceptionpublic boolean await(long timeout, TimeUnit unit) throws InterruptedExceptionpublic void countDown() 复制代码

await()检查计数是否为0,如果大于0,就等待,await()可以被中断,也可以设置最长等待时间。countDown检查计数,如果已经为0,直接返回,否则减少计数,如果新的计数变为0,则唤醒所有等待的线程。

在,我们介绍了门栓的两种应用场景,一种是同时开始,另一种是主从协作。它们都有两类线程,互相需要同步,我们使用CountDownLatch重新演示下。

在同时开始场景中,运行员线程等待主裁判线程发出开始指令的信号,一旦发出后,所有运动员线程同时开始,计数初始为1,运动员线程调用await,主线程调用countDown,示例代码如下:

public class RacerWithCountDownLatch {    static class Racer extends Thread {        CountDownLatch latch;        public Racer(CountDownLatch latch) {            this.latch = latch;        }        @Override        public void run() {            try {                this.latch.await();                System.out.println(getName()                        + " start run "+System.currentTimeMillis());            } catch (InterruptedException e) {            }        }    }    public static void main(String[] args) throws InterruptedException {        int num = 10;        CountDownLatch latch = new CountDownLatch(1);        Thread[] racers = new Thread[num];        for (int i = 0; i < num; i++) {            racers[i] = new Racer(latch);            racers[i].start();        }        Thread.sleep(1000);        latch.countDown();    }}复制代码

代码比较简单,就不赘述了。在主从协作模式中,主线程依赖工作线程的结果,需要等待工作线程结束,这时,计数初始值为工作线程的个数,工作线程结束后调用countDown,主线程调用await进行等待,示例代码如下:

public class MasterWorkerDemo {    static class Worker extends Thread {        CountDownLatch latch;        public Worker(CountDownLatch latch) {            this.latch = latch;        }        @Override        public void run() {            try {                // simulate working on task                Thread.sleep((int) (Math.random() * 1000));                // simulate exception                if (Math.random() < 0.02) {                    throw new RuntimeException("bad luck");                }            } catch (InterruptedException e) {            } finally {                this.latch.countDown();            }        }    }    public static void main(String[] args) throws InterruptedException {        int workerNum = 100;        CountDownLatch latch = new CountDownLatch(workerNum);        Worker[] workers = new Worker[workerNum];        for (int i = 0; i < workerNum; i++) {            workers[i] = new Worker(latch);            workers[i].start();        }        latch.await();        System.out.println("collect worker results");    }}复制代码

需要强调的是,在这里,countDown的调用应该放到finally语句中,确保在工作线程发生异常的情况下也会被调用,使主线程能够从await调用中返回。

循环栅栏CyclicBarrier

我们在使用wait/notify实现了一个简单的集合点AssemblePoint,我们提到,Java并发包中已经提供了类似工具,就是CyclicBarrier。它的大概含义是指,它相当于是一个栅栏,所有线程在到达该栅栏后都需要等待其他线程,等所有线程都到达后再一起通过,它是循环的,可以用作重复的同步。

CyclicBarrier特别适用于并行迭代计算,每个线程负责一部分计算,然后在栅栏处等待其他线程完成,所有线程到齐后,交换数据和计算结果,再进行下一次迭代。

与CountDownLatch类似,它也有一个数字,但表示的是参与的线程个数,这个数字通过构造方法进行传递:

public CyclicBarrier(int parties)复制代码

它还有一个构造方法,接受一个Runnable参数,如下所示:

public CyclicBarrier(int parties, Runnable barrierAction)复制代码

这个参数表示栅栏动作,当所有线程到达栅栏后,在所有线程执行下一步动作前,运行参数中的动作,这个动作由最后一个到达栅栏的线程执行。

CyclicBarrier的主要方法就是await:

public int await() throws InterruptedException, BrokenBarrierExceptionpublic int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException复制代码

await在等待其他线程到达栅栏,调用await后,表示自己已经到达,如果自己是最后一个到达的,就执行可选的命令,执行后,唤醒所有等待的线程,然后重置内部的同步计数,以循环使用。

await可以被中断,可以限定最长等待时间,中断或超时后会抛出异常。需要说明的是异常BrokenBarrierException,它表示栅栏被破坏了,什么意思呢?在CyclicBarrier中,参与的线程是互相影响的,只要其中一个线程在调用await时被中断了,或者超时了,栅栏就会被破坏,此外,如果栅栏动作抛出了异常,栅栏也会被破坏,被破坏后,所有在调用await的线程就会退出,抛出BrokenBarrierException。

我们看一个简单的例子,多个游客线程分别在集合点A和B同步:

public class CyclicBarrierDemo {    static class Tourist extends Thread {        CyclicBarrier barrier;        public Tourist(CyclicBarrier barrier) {            this.barrier = barrier;        }        @Override        public void run() {            try {                // 模拟先各自独立运行                Thread.sleep((int) (Math.random() * 1000));                // 集合点A                barrier.await();                System.out.println(this.getName() + " arrived A "                        + System.currentTimeMillis());                // 集合后模拟再各自独立运行                Thread.sleep((int) (Math.random() * 1000));                // 集合点B                barrier.await();                System.out.println(this.getName() + " arrived B "                        + System.currentTimeMillis());            } catch (InterruptedException e) {            } catch (BrokenBarrierException e) {            }        }    }    public static void main(String[] args) {        int num = 3;        Tourist[] threads = new Tourist[num];        CyclicBarrier barrier = new CyclicBarrier(num, new Runnable() {            @Override            public void run() {                System.out.println("all arrived " + System.currentTimeMillis()                        + " executed by " + Thread.currentThread().getName());            }        });        for (int i = 0; i < num; i++) {            threads[i] = new Tourist(barrier);            threads[i].start();        }    }}复制代码

在我的电脑上的一次输出为:

all arrived 1490053578552 executed by Thread-1Thread-1 arrived A 1490053578555Thread-2 arrived A 1490053578555Thread-0 arrived A 1490053578555all arrived 1490053578889 executed by Thread-0Thread-0 arrived B 1490053578890Thread-2 arrived B 1490053578890Thread-1 arrived B 1490053578890复制代码

多个线程到达A和B的时间是一样的,使用CyclicBarrier,达到了重复同步的目的。

CyclicBarrier与CountDownLatch可能容易混淆,我们强调下其区别:

  • CountDownLatch的参与线程是有不同角色的,有的负责倒计时,有的在等待倒计时变为0,负责倒计时和等待倒计时的线程都可以有多个,它用于不同角色线程间的同步。
  • CyclicBarrier的参与线程角色是一样的,用于同一角色线程间的协调一致。
  • CountDownLatch是一次性的,而CyclicBarrier是可以重复利用的。

小结

本节介绍了Java并发包中的一些同步协作工具:

  • 在读多写少的场景中使用ReentrantReadWriteLock替代ReentrantLock,以提高性能
  • 使用Semaphore限制对资源的并发访问数
  • 使用CountDownLatch实现不同角色线程间的同步
  • 使用CyclicBarrier实现同一角色线程间的协调一致

实际中,应该优先使用这些工具,而不是手工用wait/notify或者显示锁/条件同步。

下一节,我们来探讨一个特殊的概念,线程局部变量ThreadLocal,它是什么呢?

(与其他章节一样,本节所有代码位于 )


未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。

转载地址:http://kansa.baihongyu.com/

你可能感兴趣的文章
使用HttpWebRequest出错时获取详细的错误信息
查看>>
sql还原(.mdf文件还原)
查看>>
Mellanox infinoband RDMA SDP
查看>>
Nearest Common Ancestors(LCA)
查看>>
JS/atan2 pow
查看>>
Pythoh网络编程3:创建TCP服务器和客户端
查看>>
angularjs 出现 “Possibly unhandled rejection: cancel ”错误
查看>>
bzoj 2653 middle (主席树+二分)
查看>>
指导别人,弥补自己
查看>>
BZOJ3932: [CQOI2015]任务查询系统
查看>>
和make相关的一些命令
查看>>
Fiddler抓取https设置及其原理
查看>>
常用的一些模板
查看>>
WPF使用Expression Design设计图形
查看>>
Ubuntu 下Qt安装实用教程
查看>>
DNS 协议2
查看>>
Ubuntu 隐藏所有窗口快捷键不生效问题
查看>>
编译Spring源码
查看>>
javascript运算符优先级
查看>>
Spring Cloud 学习 (七) Spring Cloud Sleuth
查看>>